Ramanujan's sum

This article is not about Ramanujan summation.

In number theory, a branch of mathematics, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

c_q(n)=
\sum_{a=1\atop (a,q)=1}^q
e^{2 \pi i \tfrac{a}{q} n}
,

where (a, q) = 1 means that a only takes on values coprime to q.

Srinivasa Ramanujan introduced the sums in a 1918 paper.[1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently-large odd number is the sum of three primes.[2]

Contents

Notation

For integers a and b,   a\mid b is read "a divides b" and means that there is an integer c such that b = ac. Similarly, a\nmid b is read "a does not divide b". The summation symbol \sum_{d\,\mid\,m}f(d) means that d goes through all the positive divisors of m, e.g.

\sum_{d\,\mid\,12}f(d) = 
f(1) %2B f(2) %2B f(3) %2B f(4) %2B f(6) %2B f(12).

(a,\,b)\; is the greatest common divisor,

\phi(n)\; is Euler's totient function,

\mu(n)\; is the Möbius function, and

\zeta(s)\; is the Riemann zeta function.

Formulas for cq(n)

Trigonometric

These formulas come from the definition, Euler's formula e^{ix}= \cos x %2B i \sin x, and elementary trigonometric identities.


\begin{align}
c_1(n)& = 
1\\
c_2(n) &=
\cos n\pi\\

c_3(n)&=
2\cos \tfrac23 n\pi\\

c_4(n)&=
2\cos \tfrac12 n\pi\\

c_5(n)&=
2\cos \tfrac25 n\pi %2B 
2\cos \tfrac45 n\pi\\

c_6(n)&=
2\cos \tfrac13 n\pi \\

c_7(n)&=
2\cos \tfrac27 n\pi %2B 
2\cos \tfrac47 n\pi %2B 
2\cos \tfrac67 n\pi \\

c_8(n)&=
2\cos \tfrac14 n\pi %2B 
2\cos \tfrac34 n\pi \\

c_9(n)&=
2\cos \tfrac29 n\pi %2B 
2\cos \tfrac49 n\pi %2B 
2\cos \tfrac89 n\pi \\

c_{10}(n)&=
2\cos \tfrac15 n\pi %2B 
2\cos \tfrac35 n\pi \\
\end{align}

and so on ( A000012,  A033999,  A099837,  A176742,..,  A100051,...) They show that cq(n) is always real.

Kluyver

Let \zeta_q=e^{\frac{2\pi i}{q}}.

Then ζq is a root of the equation xq – 1 = 0. Each of its powers ζq, ζq2, ... ζqq = ζq0 = 1 is also a root. Therefore, since there are q of them, they are all of the roots. The numbers ζqn where 1 ≤ nq are called the qth roots of unity. ζq is called a primitive q th root of unity because the smallest value of n that makes ζqn = 1 is q. The other primitive qth roots of are the numbers ζqa where (a, q) = 1. Therefore, there are φ(q) primitive q th roots of unity.

Thus, the Ramanujan sum cq(n) is the sum of the n th powers of the primitive q th roots of unity.

It is a fact[3] that the powers of ζq are precisely the primitive roots for all the divisors of q.

For example, let q = 12. Then

ζ12, ζ125, ζ127, and ζ1211 are the primitive twelfth roots of unity,
ζ122 and ζ1210 are the primitive sixth roots of unity,
ζ123 = i and ζ129 = −i are the primitive fourth roots of unity,
ζ124 and ζ128 are the primitive third roots of unity,
ζ126 = −1 is the primitive second root of unity, and
ζ1212 = 1 is the primitive first root of unity.

Therefore, if

\eta_q(n) = \sum_{k=1}^q \zeta_q^{kn}

is the sum of the n th powers of all the roots, primitive and imprimitive,

\eta_q(n) = \sum_{d\,\mid\, q} c_d(n),

and by Möbius inversion,

c_q(n) = \sum_{d\,\mid\,q} \mu\left(\frac{q}d\right)\eta_d(n).

It follows from the identity xq – 1 = (x – 1)(xq–1 + xq–2 + ... + x + 1) that


\eta_q(n) = 
\begin{cases}
0&\;\mbox{  if }q\nmid n\\
q&\;\mbox{  if }q\mid n\\
\end{cases}

and this leads to the formula


c_q(n)=
\sum_{d\,\mid\,(q,n)}\mu\left(\frac{q}{d}\right) d
,
    published by Kluyver in 1906.[4]

This shows that cq(n) is always an integer. Compare it with the formula


\phi(q)=
\sum_{d\,\mid\,q}\mu\left(\frac{q}{d}\right) d
.

von Sterneck

It is easily shown from the definition that cq(n) is multiplicative when considered as a function of q for a fixed value of n: i.e.

\mbox{If } \;(q,r) = 1 \;\mbox{ then }\; c_q(n)c_r(n)=c_{qr}(n).

From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,


c_p(n) = 
\begin{cases}
-1     &\mbox{  if }p\nmid n\\
\phi(p)&\mbox{  if }p\mid n\\
\end{cases}
,

and if pk is a prime power where k > 1,


c_{p^k}(n) = 
\begin{cases}
0         &\mbox{  if }p^{k-1}\nmid n\\
-p^{k-1}  &\mbox{  if }p^{k-1}\mid n \mbox{ and }p^k\nmid n\\
\phi(p^k) &\mbox{  if }p^k\mid n\\
\end{cases}
.

This result and the multiplicative property can be used to prove

c_q(n)=
\mu\left(\frac{q}{(q, n)}\right)
\frac{\phi(q)}{\phi\left(\frac{q}{(q, n)}\right)}
.
    This is called von Sterneck's arithmetic function.[5]

The equivalence of it and Ramanujan's sum is due to Hölder.[6][7]

Other properties of cq(n)

For all positive integers q,


c_1(q) = 1, \;\;
 c_q(1) = \mu(q), \;
\mbox{  and  }\; c_q(q) =
\phi(q)
.

\mbox{If }
m \equiv n \pmod q
\mbox{ then }
c_q(m) = 
c_q(n)
.

For a fixed value of q the absolute value of the sequence

cq(1), cq(2), ... is bounded by φ(q), and

for a fixed value of n the absolute value of the sequence

c1(n), c2(n), ... is bounded by σ(n), the sum of the divisors of n.

If q > 1

\sum_{n=a}^{a%2Bq-1} c_q(n)=0.

Table

Ramanujan Sum cs(n)
  n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
3 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2
4 0 −2 0 2 0 −2 0 2 0 −2 0 −2 0 2 0 −2 0 2 0 −2 0 −2 0 2 0 −2 0 2 0 −2
5 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4
6 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2
7 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1
8 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0
9 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3
10 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4
11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1
12 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4
13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1
14 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1
15 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8
16 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 −8 0 0 0 0 0 0
17 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
18 0 0 3 0 0 −3 0 0 −6 0 0 −3 0 0 3 0 0 6 0 0 3 0 0 −3 0 0 −6 0 0 −3
19 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 18 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
20 0 2 0 −2 0 2 0 −2 0 −8 0 −2 0 2 0 −2 0 2 0 8 0 2 0 −2 0 2 0 −2 0 −8
21 1 1 −2 1 1 −2 −6 1 −2 1 1 −2 1 −6 −2 1 1 −2 1 1 12 1 1 −2 1 1 −2 −6 1 −2
22 1 −1 1 −1 1 −1 1 −1 1 −1 −10 −1 1 −1 1 −1 1 −1 1 −1 1 10 1 −1 1 −1 1 −1 1 −1
23 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 22 −1 −1 −1 −1 −1 −1 −1
24 0 0 0 4 0 0 0 −4 0 0 0 −8 0 0 0 −4 0 0 0 4 0 0 0 8 0 0 0 4 0 0
25 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 20 0 0 0 0 −5
26 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −12 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 12 1 −1 1 −1
27 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 18 0 0 0
28 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 −12 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 12 0 2
29 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 28 −1
30 −1 1 2 1 4 −2 −1 1 2 −4 −1 −2 −1 1 −8 1 −1 −2 −1 −4 2 1 −1 −2 4 1 2 1 −1 8

Ramanujan expansions

If f(n) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form

f(n)=\sum_{q=1}^\infty a_q c_q(n)   or of the form
f(n)=\sum_{q=1}^\infty a_q c_n(q)   (where the aq are complex numbers),

is called a Ramanujan expansion[8] of f(n). .

Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[9][10][11]

The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series \sum_{n=1}^\infty\frac{\mu(n)}{n} converges to 0, and the results for r(n) and r′(n) depend on theorems in an earlier paper.[12]

All the formulas in this section are from Ramanujan's 1918 paper.

Generating functions

The generating functions of the Ramanujan sums are Dirichlet series:


\zeta(s)
\sum_{\delta\,\mid\,q}
\mu\left(\frac{q}{\delta}\right)
\delta^{1-s} =
\sum_{n=1}^\infty
\frac{c_q(n)}{n^s}

is a generating function for the sequence cq(1), cq(2), ... where q is kept constant, and


\frac{\sigma_{r-1}(n)}{n^{r-1}\zeta(r)}=
\sum_{q=1}^\infty
\frac{c_q(n)}{q^{r}}

is a generating function for the sequence c1(n), c2(n), ... where n is kept constant.

There is also the double Dirichlet series


\frac{\zeta(s) \zeta(r%2Bs-1)}{\zeta(r)}= 
\sum_{q=1}^\infty \sum_{n=1}^\infty 
\frac{c_q(n)}{q^r n^s}
.

σk(n)

σk(n) is the divisor function (i.e. the sum of the kth powers of the divisors of n, including 1 and n). σ0(n), the number of divisors of n, is usually written d(n) and σ1(n), the sum of the divisors of n, is usually written σ(n).

If s > 0,


\sigma_s(n)=
n^s
\zeta(s%2B1)
\left(
\frac{c_1(n)}{1^{s%2B1}}%2B
\frac{c_2(n)}{2^{s%2B1}}%2B
\frac{c_3(n)}{3^{s%2B1}}%2B
\dots
\right)

and


\sigma_{-s}(n)=
\zeta(s%2B1)
\left(
\frac{c_1(n)}{1^{s%2B1}}%2B
\frac{c_2(n)}{2^{s%2B1}}%2B
\frac{c_3(n)}{3^{s%2B1}}%2B
\dots
\right).

Setting s = 1 gives


\sigma(n)=
\frac{\pi^2}{6}n
\left(
\frac{c_1(n)}{1}%2B
\frac{c_2(n)}{4}%2B
\frac{c_3(n)}{9}%2B
\dots
\right) .

If the Riemann hypothesis is true, and -\tfrac12<s<\tfrac12,


\begin{align}
\sigma_s(n)
&=
\zeta(1-s)
\left(
\frac{c_1(n)}{1^{1-s}}%2B
\frac{c_2(n)}{2^{1-s}}%2B
\frac{c_3(n)}{3^{1-s}}%2B
\dots
\right)\\

&=
n^s
\zeta(1%2Bs)
\left(
\frac{c_1(n)}{1^{1%2Bs}}%2B
\frac{c_2(n)}{2^{1%2Bs}}%2B
\frac{c_3(n)}{3^{1%2Bs}}%2B
\dots
\right).\\
\end{align}

d(n)

d(n) = σ0(n) is the number of divisors of n, including 1 and n itself.


-d(n)=
\frac{\log 1}{1}c_1(n)%2B
\frac{\log 2}{2}c_2(n)%2B
\frac{\log 3}{3}c_3(n)%2B
\dots

and


-d(n)(2\gamma%2B\log n)=
\frac{\log^2 1}{1}c_1(n)%2B
\frac{\log^2 2}{2}c_2(n)%2B
\frac{\log^2 3}{3}c_3(n)%2B
\dots

where γ = 0.5772... is the Euler–Mascheroni constant.

φ(n)

Euler's totient function φ(n) is the number of positive integers less than n and coprime to n.

Ramanujan defines a generalization of it: if   n=p_1^{a_1}p_2^{a_2}p_3^{a_3}\dots  is the prime factorization of n, and s is a complex number, let

\phi_s(n)=n^s(1-p_1^{-s})(1-p_2^{-s})(1-p_3^{-s})\dots,
so that φ1(n) = φ(n) is Euler's function.[13]

He proves that


\frac{\mu(n)n^s}{\phi_s(n)\zeta(s)}=
\sum_{\nu=1}^\infty \frac{\mu(m\nu)}{\nu^s}

and uses this to show that

\frac{\phi_s(n)\zeta(s%2B1)}{n^s}=\frac{\mu(1)c_1(n)}{\phi_{s%2B1}(1)}%2B\frac{\mu(2)c_2(n)}{\phi_{s%2B1}(2)}%2B\frac{\mu(3)c_3(n)}{\phi_{s%2B1}(3)}%2B\dots.

Letting s = 1,



\begin{align}

\phi(n) = 

\frac{6}{\pi^2}n

\Big(
c_1(n)

&-\frac{c_2(n)}{2^2-1}
-\frac{c_3(n)}{3^2-1}
-\frac{c_5(n)}{5^2-1}  \\

&%2B\frac{c_6(n)}{(2^2-1)(3^2-1)}
-\frac{c_7(n)}{7^2-1}
%2B\frac{c_{10}(n)}{(2^2-1)(5^2-1)}
-\dots 
\Big).\\
\end{align}

Note that the constant is the inverse[14] of the one in the formula for σ(n).

Λ(n)

Von Mangoldt's function Λ(n) is zero unless n = pk is a power of a prime number, in which case it is the natural logarithm log p.


-\Lambda(m) = 
c_m(1)%2B
\frac12c_m(2)%2B
\frac13c_m(3)%2B
\dots

Zero

For all n > 0,

0=
c_1(n)%2B
\frac12c_2(n)%2B
\frac13c_3(n)%2B
\dots.

This is equivalent to the prime number theorem.[15][16]

r2s(n) (sums of squares)

r2s(n) is the number of way of representing n as the sum of 2s squares, counting different orders and signs as different (e.g., r2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)

Ramanujan defines a function δ2s(n) and references a paper[17] in which he proved that r2s(n) = δ2s(n) for s = 1, 2, 3, and 4. For s > 4 he shows that δ2s(n) is a good approximation to r2s(n).

s = 1 has a special formula:


\delta_2(n)=
\pi
\left(
\frac{c_1(n)}{1}-
\frac{c_3(n)}{3}%2B
\frac{c_5(n)}{5}-
\dots
\right).

In the following formulas the signs repeat with a period of 4.

If s ≡ 0 (mod 4),


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}%2B
\frac{c_4(n)}{2^s}%2B 
\frac{c_3(n)}{3^s}%2B 
\frac{c_8(n)}{4^s}%2B
\frac{c_5(n)}{5^s}%2B
\frac{c_{12}(n)}{6^s}%2B
\frac{c_7(n)}{7^s}%2B
\frac{c_{16}(n)}{8^s}%2B
\dots
\right)

If s ≡ 2 (mod 4),


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}-
\frac{c_4(n)}{2^s}%2B 
\frac{c_3(n)}{3^s}- 
\frac{c_8(n)}{4^s}%2B
\frac{c_5(n)}{5^s}-
\frac{c_{12}(n)}{6^s}%2B
\frac{c_7(n)}{7^s}-
\frac{c_{16}(n)}{8^s}%2B
\dots
\right)

If s ≡ 1 (mod 4) and s > 1,


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}%2B
\frac{c_4(n)}{2^s}-
\frac{c_3(n)}{3^s}%2B 
\frac{c_8(n)}{4^s}%2B
\frac{c_5(n)}{5^s}%2B
\frac{c_{12}(n)}{6^s}-
\frac{c_7(n)}{7^s}%2B
\frac{c_{16}(n)}{8^s}%2B
\dots
\right)

If s ≡ 3 (mod 4),


\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}-
\frac{c_4(n)}{2^s}-
\frac{c_3(n)}{3^s}- 
\frac{c_8(n)}{4^s}%2B
\frac{c_5(n)}{5^s}-
\frac{c_{12}(n)}{6^s}-
\frac{c_7(n)}{7^s}-
\frac{c_{16}(n)}{8^s}%2B
\dots
\right)

and therefore,


r_2(n)= 
\pi
\left(
\frac{c_1(n)}{1}-
\frac{c_3(n)}{3}%2B
\frac{c_5(n)}{5}-
\frac{c_7(n)}{7}%2B
\frac{c_{11}(n)}{11}-
\frac{c_{13}(n)}{13}%2B
\frac{c_{15}(n)}{15}-
\frac{c_{17}(n)}{17}%2B
\dots
\right)

r_4 (n)=
\pi^2 n
\left(
\frac{c_1(n)}{1}-
\frac{c_4(n)}{4}%2B
\frac{c_3(n)}{9}- 
\frac{c_8(n)}{16}%2B
\frac{c_5(n)}{25}-
\frac{c_{12}(n)}{36}%2B
\frac{c_7(n)}{49}-
\frac{c_{16}(n)}{64}%2B
\dots
\right)

r_6(n)=
\frac{\pi^3 n^2}{2}
\left(
\frac{c_1(n)}{1}-
\frac{c_4(n)}{8}-
\frac{c_3(n)}{27}- 
\frac{c_8(n)}{64}%2B
\frac{c_5(n)}{125}-
\frac{c_{12}(n)}{216}-
\frac{c_7(n)}{343}-
\frac{c_{16}(n)}{512}%2B
\dots
\right)

r_8(n)=
\frac{\pi^4 n^3}{6}
\left(
\frac{c_1(n)}{1}%2B
\frac{c_4(n)}{16}%2B 
\frac{c_3(n)}{81}%2B 
\frac{c_8(n)}{256}%2B
\frac{c_5(n)}{625}%2B
\frac{c_{12}(n)}{1296}%2B
\frac{c_7(n)}{2401}%2B
\frac{c_{16}(n)}{4096}%2B
\dots
\right)

r2s(n) (sums of triangles)

r2s(n) is the number of ways n can be represented as the sum of 2s triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the nth triangular number is given by the formula n(n + 1)/2.)

The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function δ′2s(n) such that r2s(n) = δ′2s(n) for s = 1, 2, 3, and 4, and that for s > 4, δ′2s(n) is a good approximation to r2s(n).

Again, s = 1 requires a special formula:


\delta'_2(n)=
\frac{\pi}{4}
\left(
\frac{c_1(4n%2B1)}{1}-
\frac{c_3(4n%2B1)}{3}%2B
\frac{c_5(4n%2B1)}{5}-
\frac{c_7(4n%2B1)}{7}%2B
\dots
\right).

If s is a multiple of 4,


\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n%2B\frac{s}4\right)^{s-1}
\left(
\frac{c_1(n%2B\frac{s}4)}{1^s}%2B
\frac{c_3(n%2B\frac{s}4)}{3^s}%2B
\frac{c_5(n%2B\frac{s}4)}{5^s}%2B
\dots
\right).

If s is twice an odd number,


\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n%2B\frac{s}4\right)^{s-1}
\left(
\frac{c_1(2n%2B\frac{s}2)}{1^s}%2B
\frac{c_3(2n%2B\frac{s}2)}{3^s}%2B
\frac{c_5(2n%2B\frac{s}2)}{5^s}%2B
\dots
\right).

If s is an odd number and s > 1,


\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n%2B\frac{s}4\right)^{s-1}
\left(
\frac{c_1(4n%2Bs)}{1^s}-
\frac{c_3(4n%2Bs)}{3^s}%2B
\frac{c_5(4n%2Bs)}{5^s}-
\dots
\right).

Therefore,


r'_2(n)=
\frac{\pi}{4}
\left(
\frac{c_1(4n%2B1)}{1}-
\frac{c_3(4n%2B1)}{3}%2B
\frac{c_5(4n%2B1)}{5}-
\frac{c_7(4n%2B1)}{7}%2B
\dots
\right)

r'_4(n)=
\left(\tfrac12\pi\right)^2\left(n%2B\tfrac12\right)
\left(
\frac{c_1(2n%2B1)}{1}%2B
\frac{c_3(2n%2B1)}{9}%2B
\frac{c_5(2n%2B1)}{25}%2B
\dots
\right)

r'_6(n)=
\frac{(\frac12\pi)^3}{2}\left(n%2B\tfrac34\right)^2
\left(
\frac{c_1(4n%2B3)}{1}-
\frac{c_3(4n%2B3)}{27}%2B
\frac{c_5(4n%2B3)}{125}-
\dots
\right)

r'_8(n)=
\frac{(\frac12\pi)^4}{6}(n%2B1)^3
\left(
\frac{c_1(n%2B1)}{1}%2B
\frac{c_3(n%2B1)}{81}%2B
\frac{c_5(n%2B1)}{625}%2B
\dots
\right).

Sums

Let


T_q(n) = 
c_q(1) %2B 
c_q(2)%2B
\dots%2Bc_q(n)

and


U_q(n) = 
T_q(n) %2B 
\tfrac12\phi(q).

Then if s > 1,


\sigma_{-s}(1)%2B
\sigma_{-s}(2)%2B
\dots%2B
\sigma_{-s}(n)
=
\zeta(s%2B1)
\left(
n%2B
\frac{T_2(n)}{2^{s%2B1}}%2B
\frac{T_3(n)}{3^{s%2B1}}%2B
\frac{T_4(n)}{4^{s%2B1}}
%2B\dots
\right)
=
\zeta(s%2B1)
\left(
n%2B\tfrac12%2B
\frac{U_2(n)}{2^{s%2B1}}%2B
\frac{U_3(n)}{3^{s%2B1}}%2B
\frac{U_4(n)}{4^{s%2B1}}
%2B\dots
\right)-
\tfrac12\zeta(s)
,

d(1)%2B
d(2)%2B
\dots%2B
d(n)
=
-\frac{T_2(n)\log2}{2}
-\frac{T_3(n)\log3}{3}
-\frac{T_4(n)\log4}{4}
-\dots
,

d(1)\log1%2B
d(2)\log2%2B
\dots%2B
d(n)\log n
=
-\frac{T_2(n)(2\gamma\log2-\log^22)}{2}
-\frac{T_3(n)(2\gamma\log3-\log^23)}{3}
-\frac{T_4(n)(2\gamma\log4-\log^24)}{4}
-\dots
,

r_2(1)%2B
r_2(2)%2B
\dots%2B
r_2(n)
=
\pi
\left(
n
-\frac{T_3(n)}{3}
%2B\frac{T_5(n)}{5}
-\frac{T_7(n)}{7}
%2B\dots
\right)
.

See also

Notes

  1. ^ Ramanujan, On Certain Trigonometric Sums ...

    These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.

    (Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.
  2. ^ Nathanson, ch. 8
  3. ^ Hardy & Wright, Thms 65, 66
  4. ^ G. H. Hardy, P. V. Seshu Aiyar, & B. M. Wilson, notes to On certain trigonometrical sums ..., Ramanujan, Papers, p. 343
  5. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
  6. ^ Knopfmacher, p. 196
  7. ^ Hardy & Wright, p. 243
  8. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, pp. 369–371
  9. ^ Ramanujan, On certain trigonometrical sums...

    The majority of my formulae are "elementary" in the technical sense of the word — they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series

    (Papers, p. 179)
  10. ^ The theory of formal Dirichlet series is discussed in Hardy & Wright, § 17.6 and in Knopfmacher.
  11. ^ Knopfmacher, ch. 7, discusses Ramanujan expansions as a type of Fourier expansion in an inner product space which has the cq as an orthogonal basis.
  12. ^ Ramanujan, On Certain Arithmetical Functions
  13. ^ This is Jordan's totient function, Js(n).
  14. ^ Cf. Hardy & Wright, Thm. 329, which states that   \;\frac{6}{\pi^2}<\frac{\sigma(n)\phi(n)}{n^2}<1.
  15. ^ Hardy, Ramanujan, p. 141
  16. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
  17. ^ Ramanujan, On Certain Arithmetical Functions

References